+14-28% boost in winter strawberry trial
Added on 23 May 2022
ABOUT THE PROJECT
This work was independently performed by ASU Assistant Professor Yujin Park and student Jordan Collins. Films were provided by UbiQD, Inc. This work was presented by Dr. Park as a poster at the 2021 ASHS Annual Meeting in Denver, CO.
In this study, the influence of spectral conversion under UbiGro quantum dot (QD) luminescent greenhouse films on plant growth and fruit yield of strawberries grown during winter was investigated.
UbiGro (600 nm) quantum dot (QD) greenhouse films were installed surrounding two 1.2 m x 1.2 m x 0.6 m (3.9 ft x 3.9 ft x 2.0 ft) growth modules located inside the College of Integrative Sciences and Arts Research Greenhouse (polycarbonate panels) at Arizona State University in Mesa, AZ. Two identical neighboring growth modules were built to serve as the Control group, using clear polyethylene terephthalate (PET) film to balance the light intensities and diffusivities between the four areas. Shade curtains (40%) were used on one pair of growth modules to explore a lower daily light integral (DLI) regime.
Inside each module, day-neutral strawberry 'Albion' seedlings were grown in rockwool substrates for 14 weeks at 20°C with ambient sunlight, using 150 ppm Nitrogen fertilizer with pH of 5.5-6.0 and EC of 1.8 mS/cm. The 100-day experiment began October 1st, 2020 and ended January 8th, 2021.
LIGHT ENVIRONMENT
During the experiment period, the average daily light inegrals (DLIs) were consistent between control and treatment groups, measured at 6 and 4 mol/m2/s under ambient and 40% shaded conditions, respectively. These DLIs are considerably lower than would be available during peak months, and as such this study demonstrates the QD film's performance over strawberries in low light levels (winter). For both higher and lower DLI treatments, the light spectrum was characterized under the QD film and the control film, presented in the figure below.
Photo created by serhii_bobyk - www.freepik.com
Source: Agritech Tomorrow
More news